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1. Introduction.

The Central Limit Theorem and the stability property provide the basic
reasons for regarding stable processes as a natural generalization of Gaussian
ones. As an analog to the well-known spectral representation of stationary
Gaussian processes, every symmetric a—stable (SaS) stochastic process with

parameter set T has a version of the form

(1.1) X(t) = Ish(t,s)dM(s), teT

(ef. [11, (121, [29]1, [30], {11] and the discussion of the history of (1.1) in
[9]) and in the stationary case one can choose t + h(t,*) as an orbit of a aroup
of isometries on L* (see [9]). Here M is an independently scattered SoS
random measure on an abstract measurable space (S,A).

There are two special cases of (1.1) that have been extensively studied:
harmonizable processes given by

(1.2) X(t) = r eitde(s), teR

-00

(with appropriate modifications if t runs over a group) (cf. [10], 193], [6],

[17], [2], [23] and [32]) and moving averages

00

(1.3) X(t) = J g(t-s)dM(s), teR
(cf. [6], [25], [4] and [2]).

In this paper we study general SoS processes given by (1.1). They are
determined by two quantities: the kernel h and the control measure m of M.
In contrast with the approach taken in [9] and [2], which relies on the

properties of the mapping T3t » h(t,.) « L%, we relate path properties of X
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with properties of the mapping S3s » h(.,s) « R.r( CT) which plays the crucial
role here. More specifically, we are concerned with processes having sample

paths in a separable Banach space V(T) of functions defined on T. We show

‘i; that the kernel h in (1.1) admits a modification with all sections h(.,s) in
V(T) (Section 5). Therefore we may always replace (1.1) by
p (1.4) X = J h(.,s)dM(s),
S

where ¢n the right-hand side we have a stochastic integral of the V(T)-valued

function s > h(.,s). Such stochastic integrals of Banach space valued functions

have been investigated in [26]) for infinitely divisible random mea-

sures. In the present stable case the construction can be simplified and this

is done at the beginning of Section 3. Then we establish the relationship

between the stochastic integral representation of stable random vectors in

Banach spaces and the series representation due to LePage, Woodrooffe and Zinn [13].
In Section 4 we use some ideas of Marcus and Pisier [17] and an adaptation

of Hoffmann-Jgrgensen's inequality due to Giné and Zinn [8] to obtain bounds

for moments of the norm of X(.). We also introduce a complete norm on the

space of all vector valued functions f for which SfdM exists, similar to Pisier's

norm for CLT [21]. Theorem 4.5 establishes the role of simple functions in

the series representation of stable random vectors.

In Section 6 we apply the results of Sections 5 and 4 to characterize
the absolute continuity of sample paths of SaS processes. Earlier the absolute 'ﬂ‘}
continuity of sample paths has been investigated by Cambanis and Miller [3]
in terms the so-called covariation function, only for the case a > 1.

Continuing the above approach, we obtain in Section 7 definitive bounds . 11

for moments of a double n-stable stochastic integral. We also cive a short and R
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2. Preliminaries and notation.

] A systematic treatment of stable measures on Banach spaces one can find in
Linde [14] and we shall refer to this book for basic definitions and facts. The
characteristic functional of an SaS p.m. pu on a separable Banach space B can be

. written in the form

(2.1) u(x*') = exp(-f l<x,x'>|*do(x)),

aU

x' ¢ B', where U is the unit sphere in B and ¢ is a finite symmetric measure

on 3U. o is uniquely determined by u and is called the spectral measure of u

4

(cf. Theorem 6.4.4 [14]). Further, for every p ¢ (0,a) fB||x||pdu(x) < ® and
for every p,q ¢ (0,a)

(2.2) L 1ixd1Pauta) VP - j 1x] 1 %u(x)) /9
B C B

where C = C(a,p,a) (we shall write L - R if ¢!

R<L<CRand C = C(a,b,...)
means that a positive constant C denends only on parameters a,b....). If ﬁ

is given by

u(x') = exp (-IB |<x,X'>l“dco(X)),

x' ¢ B', where T is a (non-necessary syrmetric) Borel measure on B, which is

o-finite on BN{0}, then fpiixiiadoo(x) < » and for every p ¢ (0,a)

(2.3) (L TxlPaogbn < C([Bllxilpdu(x))‘/p,

where C = C(a,p) (cf. Proposition 6.4.5 and Corollary 7.3.5 in [14]).

[P
S T
TN B BT S SN P

Let A be a S-ring of subsets of a non-empty set S (i.e. a rina that is T

2. 4




é
closed under countable intersections). A stochastic process {M(A): A ¢ A} is

said to be an SaS random measune if

(i) for every sequence {An} c A of pairwise disjoint sets with

i . U An ¢ A the series T M(An)'converges in probability to M(U An);
(ii) M(A]), M(AZ),...are independent, provided An e A are pairwise
disjoint;

r (iii) M(A) has an SaS distribution for every A ¢ A.
r

: It follows that the characteristic function of M(A) can be written in the

form

E exp (it M(A)) = exp (-m(A)|t|%), te R, AcA, )

where m is a non-negative measure on A. m is called the contnol measurne of M.
The existence of an SaS random measure M with a given control measure m s

follows by Kolmogorov's Consistency Theorem. In particular, if X(s), s > 0 is

an independent stationary increment process such that E exp (itX(s)) = exp(-s|t|%),

then M defined on intervals by M((a,b]) = X(b) -X(a) extends to an SoS random

w

measure on the 8-ring of all Borel bounded subsets of [0,») with the Lebesque
measure as the control measure. (see Prekopa [22]).

Throughout this paper we shall assume that (S,A) satisfies the following {
condition: there exists a sequence {An} < A such that u An = §. Then every
countably additive finite measure on A extends uniquely to a o-finite measure
on o(A) and as a consequence every control measure of an SaS random measure M
is the restriction to A of a o-finite measure m defined on o(A}. To avoid
trivialities we shall always assume that m is not zero.

For every real function f ¢ L%(S,o(A),m) the stochastic intearal fsfdM is

defined as the limit in LP of integrals of simple functions and satisfies N
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. - . . . - - % -
.......... PR S PR D P R T S e S S SR P
e e R m oD P SR RFRIELE R LW T S S eyt v IR PR PO Y vl W U DR VR VR PR WP L LI




T ” ——— - ane 2 DI San -m A e .. g CJamamanct - o - - — T— T—TT— Ty

..
6
the equality
{ | (E | I fam PP - ¢ (f RIRCIHA ’
S S
where C = C(a,p), p < a (cf. [1], and [29]). If B is a finite dimensional
i‘ Banach space, then for f « L%(S,G(A),m)
(2.4) (€ 1]t PP (] peroam
s ¢ s
(v where C depends on o and p and additionally on dim B and ||-||. Banach spaces in
which (2.4) holds for all simple functions with a universal constant C (and
thus fodM can be defined for all f ¢ L%) have been characterized by Marcus
[0 and Woyczynski [18]. This is the class of spaces of stable type o, including

in particular Hilbert spaces and Lp-spaces for p > a (see [14] for further

references).
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3. Stochastic integral and series representation of SaS random vectors in

Banach spaces.

simple

Let LB

Let M be an SaS random measure on (S,A) with the control measure m.
be the space of all simple measurable functions f: (S,o(A)) - (B, Borel (B))

such that {s: f(s) # 0} € A. As usual functions equal m-a.e. are indistinguish-

simple

able. For every f ¢ LB , f = ijIAj, xj # 0, Aj e A we set
[ FaM = Tx M(A,)
S

and

(3.1) Aa’p(f) = (|| J fam| |P)1/P,

S
simple

is a well-defined quasi norm on LB Since ffdM is

where p ¢ (0,0). Aa’p

a B-valued SaS random vector such that

(3.2) E exp(i < [fdM,x'>) = exp (-J|<f(s),x'>|adm(s)),

x' ¢ B', inequality (2.3) yields

bt ) 2 S IR dnts)) Vo

(3.3)
S

Moreover, by (2.2) A, p = A, o fOr every p,0c(0,a), where C=C{x,p,q).

Let Sg be a completion of L;Tmp]e in ), oo Inview of (3.3) Sg can be

realized as a linear subspace of Lg = LB(S,o(A),m) as follows:

where C = C(a,p).

o _ a, . © simple W foin O
Sg = {f e Lp: there exists {f } _, < Lg f in L; and

such that f
n B

Tim )

(f -f } = 0 for some (each) p ¢ (0,a)}.
Nomee Q5P 1M

(&

B’Xa,p)

By (3.1) the mapping f » fsfdM extends to an isometric injection of (S

ST LS AT RIS LPRTLF BV S S0 S P S et S s o ORI I L |- L,

el




into Lg(Q,F,P). Values of this extension are also denoted by ffdM and called

“ the stochastic integral of f with respect to M.
Because of the lack of (2.4) in general, the stable stochastic inteoral can

not be defined for all f's in LE(S,G(A),m) and Sg is the largest subspace

of Lé where ffdM is defined by taking 1imits of stochastic integrals of

simple functions. Although the dependence of xa,p(f) on f is not given

explicitly, this is a useful quasi-norm which can be effectively estimated in

many concrete examples of B (see e.a. Sections 6 and 7).

He shall frequently use the following particular case of Ito-Nisio theorem

for Barach space valued stochastic integrals which was proven in [26].

Proposition 3.1. f ¢ sC‘B and v = L{SFAM) (f and only ¢§ [1<f(s),x'>1%dm(s) < =

foroevery X' e B and the cylindrical measune bo afven by

~

uo(x') = exp {-f |<f(s),x'>[”dm(s)}, x' ¢ B',

extends e O cowntabty add(tive Bowel measunte yw on B.

As a consequence of the above proposition every SuS p.m. on B has a stochastic
integral representation which follows from the followina (cf. [26], Theorem 6.7):

Proposition 3.2. {/fdM: f ¢ Sg} (8 a clesed finear subspace of LE(e,F,P)
cons{sting of SaS wandom vectons. T4 (S,A,m) (s atem€ess, then {LISFdM): f . SE}

’

coiciaes with the set ¢f all S« p.m.'s on B.
A

We shall discuss now a different transformation of f which leads to the
same distribution as ffdM. We shall consider a series representation of stable
random vectors due to LePage, Woodroofe and Zinn [13] as it was developed by
Marcus and Pisier [17].

Assume that m(S) < = and A = »(A). Let {nj} be a sequence of positive

....................




ey —— v v -ivr

c

i.i.d. random variables such that P(nn > ) = e'x, A >0, and put Fj=n] +...+nj.

Let {Ej} be an i.i.d. sequence of symmetric random variables such that

E(Ejlu =1. Let {Tj} be a sequence of independent uniformly distributed random
Tj c A) = m(A)/m(S) for every A ¢ A. We assume that
all the sequences {nj}, {Ej} and {Tj} are independent of the others.

elements in (S,A,m), i.e. P(

Let f ¢ Sy and u = L(S fdM). Then for every x'  E'

B

o -1 ! o
El<f(rg)ox'>[* = In($)]7! | 1<f(s)x'>|" dn(s) < =
: S
and by Lemma 1.4 in [17] the series

c(u>[m(s>]‘/“jzl (rj>"’“ £y <Flr)oxt>

converges a.s. to a real SaS random variable with the characteristic function
A(t) = exp(-1t]" Jl<f(s),x">|" dm(s)), where c(a) = (fgx'usin xdx) /2.
Since ¢(t) = a(tx') and the sequence {Fjgjf(Tj)} is sign-invariant, Ito-Nisio

theorem (see e.qg. [16], 11.4.3. and 11.4.4) yields the a.s. converaence of the

series

(3.4) 2(F) = c()[m(s)] /™ Of (r.) Ve e (1)
o 9 I

and L(Z(f)) = u. Conversely, if (3.4) converges a.s. or in P, then the function
x' > exp(—fl<f,x'>l“dm) is the characteristic functional of £{(f) and by
Proposition 3.1. f ¢ sg.

We summarize above in the following:

Proposition 3.3. Let m(S) < ® and A = olA). Then f ¢ Sy if and only if
B

7(f) converges a.s. or in P. Moreover,

L{SfdAM) = L(5(f))

T T - W T W W = W e w - -
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4. Bounds for moments of an SoS stochastic integral.

To obtain the first proposition we argue similarly to Marcus [15] and to
Giné et al. [7].

1

Since j~ % + 0 a.s. by Kolmogorov's SLLN, we get that z(f) converges a.s.

if and only if

(4.1) AE) = 1 37% f(x)

converges a.s. (see (3.4)). Moreover, by contraction principle we have

27 VPLE dnt (3/m P01 PIm(s) T/ E AR 1P VP <
J

< (El] £ (AP <

2'/Pre sup (3/7)P/*1Pm(s) 1V (e 1ALR) PP,
J

where C = C(a) and p ¢ (0,a). Since E inf (j/rj)p/“ >0 and E sup (j/rj)p/“ <
j h|

(see [15] and [7] respectively) we get

Proposition 4.1. Let m(S) < = and A=c(A). Then f sg 4 and only if A(F)

converges a.s. and/on 4n Lg forn some (each) p ¢ [0,a). Moreover,
(el rfam)1P)VP o o)1V (el 1ace)[P)!/P

whene C = C{a,p)s P ¢ (0,a).
Let us note that even on the real line A(f) need not have the a-th
moment finite. This is a simple corollary to Proposition 4.2 in [56]. We

shall normalize f to ensure finiteness of all moments of A(f).
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f
Let Xo be a fixed point on the unit sphere of B. For every f ¢ Lg we )
define F(s) = f(s)/||f(s)|| if f(s) # 0 and T(s) = x otherwise. We define {
also a finite measure mc on (S,o(A)) by dmf(s) = ||f(s)||adm(s) (m(S) can ;
be infinite). Let Mf be an SaS random measure on (S,0(A)) with the control ;
measure me. In view of Proposition 3.1 f ¢ SB(S,A,m) if and only if '
f e Lg and f ¢ §;(S,0(A),mf). Moreover
(4.2) L(J fdM)=L(J Tam,). ;
S S
Let {T;} be a sequence of independent uniformiy distributed random elements
in (S,c(A),mf) i.e. P{rg e A} = mf(A)/mf(S). Let {ej} be a sequence of i.i.d. N |
random variables such that P{ej = -1} = P{ej = 1} = 1/2 and independent of -
{Tg}, By Proposition 4.1 we get

(1] f Fame 11P)!/P : ([lifll“ am) (e} 1A 1P P,

1

where C = C{a,p) and A(F) = ] i ""e.f (7 Since sup Ilj'1/“ej?(r;)ll
= J

A(Ff) converges in LE for every r > 0. Using Theorem 3.3 in Gine and Zinn [8]

we obtain for every p ¢ (0,a) and r > 0

(2]

ENAOIDYP o 1+ (€] ] J']/aej?'(rg)llr)1/r, -
¢ j= 1

3=ig*

where C = C(p,r) and jo is the greatest integer not exceeding 8']3pvr. B

y

contraction principle we have ' ]

]

Vo 5 f
ey 3% T eIT
3=j

; ||,z](jo+i)“’“ei?'(T§)‘|”
":

271+ 37 el AT

| v
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{ and clearly

#‘ e 1] 5o T <2 A" .

ARA Y

We have proven the following
Theorem 4.2. f e Sy if and onty if f e Lg and the series

) j-l/agj?(Tg) convenges in LE gon some (each} r > 0. Moreover,
J=1

(E 11 fau PP ([Hfil“ am) Vo 1T 572 7D 1M1
C j=1 J J
where C = C(a,p,r), p € (0,a) and r > 0. - -

We shall study now the relationship between boundedness and convergence in
(4.1). In view of Proposition 4.1 this will give us an additional information —

about S%. Let m(S) < =, A = g(A) and let

n ~1/a

bSY = bSX(S,A,m) = {f: S >B:sup || ] i /% f(r)]] < = a.s.). o
B B n i=1 J -
According to Proposition 4.1
o _ QU = [£. € . R- T -1/a
Sy = SB(S,A,m) {f: S B..Z j Ejf(rj) conv. a.s.}.

j=1

Obviously sg c bsg. Let

n
137V eI forp e (0,00,

¥, = sup (€ 111 57V/% ¢

and let
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" ~1/a
HfHa,O:Sl:]PE(H_lJ £ flaydllh A ).

j=1 N
)
It is standard to check that || lla 0 is a complete F-norm on bsg as well as .
on Sg. Moreover, by Proposition 4.1 all the F-norms || lla p are eauivalent 3?
' on $2, p ¢ [0,0). :
{ Lemma 4.3. Fon every f ¢ bsg and p e (0,@) IFl] <= Moreover
‘ o a
}‘ bSB c LB.
, '
F
! Proof. Without loss of agenerality we may assume that B = C[0,1]. Let
%‘ {P, } be a sequence of finite rank operators on B with ||Pk|| < 1 and such that )
)
|

ka + x for every x ¢ B. Put fk(s) = Pkf(s), s ¢ S. Clearly

n
sup |} ) j'1/a ejfk(rj) || <~ a.s. for every k and since dim PR < = the

n j=1

o0
series y j']/a

e s a
i Ej fk(rj) converges a.s. By Proposition 4.1 fk 13 SB‘
Since || ||a o and [ Ila p are equivalent on Sg there exists ¢ > 0 such that

o . . .
llql‘a,p < 1 for every g « Sy with llqlla’o <e. Since f ¢ bS% there exists I

8§ > 0 such that |l6f||a g Se. Therefore lléfk||a o < € for every k and

‘s 1
because f, eSg ||6fk“a,p < 1. By (3.3) and Proposition 4.1 (flléfkllqdm) /o <

< const l]Gfklla,p < const. Letting k»o we cet ||f||a’p 5_5'1< « as well as

F1F1%m< .
Corollary 4.4, Sg c bsg c Lg. For every p e [0,0) || "a o 45 a comolete
F-noam on bsg as well as on Sg.

Pronosition 4.1 and above Corollary qgive the following:

o S A T I T P PP P R L L AP I -t S et
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Theorem 4.5. sg is the smallest closed subspace of bsg containing all

simple functions. In  othen wonds f e Sg if and only if fon every e > 0

and p < a there exists a simple function f€ such that

L A p I
EHJZ]J gJ(f - fE)(TJ)H <€ .

pon all n € N

i;i Remarks: R
(a) For the sufficiency f€ need not be a simple function. It is enough

F to have f_ e s,

B
; ' (b) bs% = s provided B does not contain a subspace isomorphic to c_. - 9
F‘ B B o}
(c) bS% = S% = L% provided that B is of stable type o (cf. [ 18] and Lemma -
B B B ]

4.3). 1In particular these equalities hold for a < 1 and any Banach space B,

(d) In general ST ¢ bST ¢ L®. Indeed, Sztencel [31] has showed that for S
B- ""BX- "B .

every a > 1 there exists a Banach space B and a sequence {xn} < B such that

(o¢]
.

n P ..
Sﬁp El] zj=1ejxj‘l < o for every p < o and I

is a sequence of i.i.d. random variables with E exp(ite]) = exo(-|t]%). Let ™ : ‘

8.x. diveraes a.s., where {6,
i=1%3%3 e {64}

be an SaS random measure on Borel subsets of the unit interval and with the

1/a.n
Zi=%3 1 (-1)/n,d/n).

), {f.} is a bounded seauence in S%. Therefore
1

Lebesgue measure as the control measure. Put fn =n
n
5=1°%5%;
sup /311f, 1%t < =. This yields ¢’
n

. 1 )
Since L(fofndM) = L(z

= Z?=1||xi||a < », Let {Ai} be a partition

) _ <k
of [0,1] such that |Aj| = cllxj[la and define g, = Xj=](xj/|lxj|| )IAj and

- 14 . 1 _ T/a k .
g = lim 9 - Since L(fogde) = [(c Zj=1ejxj)’ by Proposition 3.1 and

Ito-Nisio theorem g ¢ Sg. On the other hand 9y € S% and by Proposition 4.1

for every n and p < o

...........................................................................
........................
.
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.....................




r v v
L AP de (R S da-dih de-se arae o

15 '
1
- £ 1 Baqd™ /%011 < Vip inf £ ) Z 7% g () 11
4 .
’
t <11'm1'nf||g||p <CHmif|E||{] dM||p| j
- n . -
) iCcp/ahmmf Ell):x ||p ;J
k-s0 j=1 '
< Const. }
This proves that g e bsg. '
To show that bsg ¢ Lg (in general) it is enough to choose axl and Banach
space B which is not of stable type a and does not contain any subspace , ‘L
isomorphic to c_. Then by (b) bS°‘ = SB and S ¢ L (cf. [18]). ._ K
Vo
-
)
s
v,

!
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5. Modification of the kernel of a stochastic integral process.

In this section we shall study processes X(t), t ¢ T which sample paths
X(*,w) belong to a separable Banach space V(T) of functions defined on T. Let
C; be the cylindrical o-field of V(T) i.e. the smallest o-field of subsets

of V(T) such that all evaluations: 5t: V(T) > R, where <x,8,> = x(t),

t
x & V(T), t ¢ T, are measurable. The equality

(5.1) = Borel (V(T))

Cy
is necessary and sufficient for regarding stochastic processes with sample paths
in V(T) as Borel measurable random elements in V(T). Observe that the inclusion
€ < Borel (V(T)) implies that every evaluation Gt is Borel measurable, and
since ét is linear, Banach theorem yields that Gt is continuous. Conversely, if
all evaluations Gt’ t ¢ T are continuous, then (5.1) holds. Indeed, since
evaluations separate points in V(T) one can easily deduce from Hahn-Banach
theorem (see e.g. [24], Sec.2, Chap.2) that the set w={Zg=]aj6t :ajenl,tjeT,nzj}
J
is dense 1in [V(T)]' with respect to the weak-star topology. Since V(T) is

separable, W is also sequentially weak-star dense in [V(T)]s and consequently,

every functional x' ¢ [V(T)]' is C;-measurable. Again by separability of

V(T) we get that Borel (V(T)) < Cy. Therefore (5.1) is equivalent to the

assumption that all evaluations x = x(t) are continuous.

ek g s

Theorem 5.1. Let V(T) be a separable Banach space of functions defined

on T such that all evaluations x + x(t) are continuous. Assume that the 1ﬁ53A}i
oy

SaS atochastic process BRSO
( P

X(t) = | h(t,s) dM(s), t ¢ T, &

S ]

SRR,

B

...................................................................
...........................................................
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has a modification xo with sample paths in V(T), where h: TxS » R 48 such
that h(t,«) e L2(S,8(A),m) for every te T.
Then thenre exists a function ho: TxS +~ R such that
(i) fon every s € S ho(',s) e V(T);
(ii) for every t e T ho(t,') = h(t,*) m-almost everywhere on S;
(i11) fon eveny x' e V(M
<Xo(',w),x'> = Js<ho(-,s),x'> dM(s)(w),

fon almost all w e Q.

Proof. The proof is divided in three parts.

Claim 1. Assume that T is a compact metric space and V(T) = C(T) is the
space of all continuous functions on T with the supremum norm. Then the
conclusion of Theorem 5.1 is true.

Proof of clafm 1. Let D be a finite subset of TxT. First we shall show

that
(5.2) J’Smax Uh(t.5) - h(t,s)|%  (t;.t,) < D} dn(s)

< C(E max ([X(t;) - X(t,)|P: (t;ot,) ¢ DN*P,

where C = C({a,p) and p ¢ (0,a).

Indeed, let us define an SaS random vector in IQD by
Y = {(X(ty) - X(t,))}
1 2 (t],tz)eD

and consider R” as a Banach space with the norm ||a|]| = max{la(t1,t2)|:

(tl’tz) e D}. Then for every b ¢ l!D we have

O SN VU
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. E exp(i <Y,b>) = E exp {i} b(t],tz) [X(t]) - X(tz)]}
a
= E exp {iJS Ib(t;,ty) [h(t;,S) - h(t,,s)] dM(s))
K = exp (-] I<F(s).021% dn(s)),
S
¢ 5 rD -

where f:S > R, f(s) = {(h(t],s) - h(tz,s))} (t],tz)eD . By (2.3) we get
v 1 1
| ( js 1F(s) 11 dm(s)) 7 < (e |1v]P)!/P

which yields (5.2).
® Let d be a metric on T. For n=1,2,... let Tn be a finite 1/n - net in T

and let T_=U Tn‘ Clearly T_ is dense in T. Define for x: T> R, & > 0 and
o n=1
S neN
a

95,00¥) = max {fx(ty) - x(t,)]: tystoeTs dty,t)) < 6}

and
Ei ¢6(X) = sup {Ix(tl) - x(tz)l: toty € T, d(t],tz) < 8}.

Inequality (5.2) applied for D ={(t],t2) € Tn x T d(tl’tz) < 8} yields
o | (o5, T8I dns) < €| (o D8, (+ ) 1IPep(0) 1P, ;
_ S Q .
; | Since ¢6’n[xo(-,w)] <2 :gg |Xo(t,w)l =2 || XO(',w) || letting n - = we obtain  i
. ]

[ T9,[n(+,s)1)* dm(s) 5_C[J (050X, (+ ) 13PdP(w) 1/
) Q

and since sample paths of X0 are continuous we get

-‘."'.'. v,
A

...........
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(5.3) Tim ¢6[h(',s)] =0
8]0

for m-almost all seS. Let seS. If (5.3) holds then h(-,s) is uniformly
continuous on T_ and there is unique continuous function ho(-,s) defined on
| - T which is equal to h(e,s) on T_. If (5.3) fails, then we put ho(t,s) =z 0
for all t<T. Therefore ho(-,s) e CLT) for all seS and ho(t,-) = h(t,*)
m-almost everywhere for every teT . By stochastic continuity of X and contin-
[ uity of t » ho(t,s) for every seS we get (ii) for every teT. C(Clearly (iii)

n
is satisfied for all x'sof the form x' = ) ajét . Since such functionals are
=1 )

sequentially weak-star dense in [V(T)]' (ii1) follows.

¢
Claim 2. Assume that V(T) is a closed subspace of C(T), where T s
a compact metric space. Then the conclusion of Thearem 5.1 holds.
1
, Proof of claim 2. By claim 1 there exists a function ho such that
ho(-,s) e C(T), (ii) and (iii) hold ((iii) for every x' e [C(T)] ). Let
E V(T)1! = {x' « [C(T)]': <x,x'> =0 for all x e V(T)}.
For every x' ¢ [V(T)]* we have
. a.s.
- Js<ho(-,s),x'>dM(s) = <Xo(','),x'> = 0.
f Therefore <h0(',s),x'> = 0 for m-almost every seS and every x' ¢ [V(T)]*.
. Let I be a countable weak-star dense subset of [V(T)]'. Define
S0 = {s¢S: <h0(-,s),x'> = 0 for all x' e T}.
’ Then m(S\So) = 0 and for every s ¢ S ho(-,s) e V(T). Thus a function h] ‘q
"
R
] ) 1
) A
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defined by h](',s) = ho(-,s) for SeSo and h](-,s) =0 for s ¢ So fulfills (i),
: ]
(i1) and (iii) of Theorem 2.1. ®
Proof of the theorem in general. Let U' = {x' ¢ [V(T)] : |Ix'|] < 1}. o
. . . . 3
U' equipped with the relative weak-star topology is a metrizable compact e
space. Let ¢: V(T) > C(U') be defined by [#(x)] (x') = <x,x'>, x ¢ V(T)
and x' ¢ U', It is easy to check that ¢ is an isometric linear injection of 1
V(T) into C(U'). Put V(U') = o[V(T)]. Since the mapping @ 3 u =+ X (*,w)eV(T) o |
1
is Borel measurable we obtain that Y: @ - V(U') defined by Y(*,0) = ¢[X0(-,w)]
is also Borel measurable. Therefore Y(x',¢), x' e U' is a stochastic process
with continuous sample paths belonging to V(U'). Let W be the set of all °
linear combinations of dés. By the discussion preceeding Theorem 5.1, for every
k
[ [} s [l ' V= n ] 1
x' ¢ U' there exists {x } ¢ WaoU', x Zj=1anj6tnj’ such that <x,x > > <x,x'>
‘o
for every x ¢ V(T). Therefore o
Y(x',*) = 1im Y(xr'\,' = 1im <X0(-,'),x"1>
n->oo n-r .
[
_ n
= Yim ) aan(th.)
noo ]
J:] -
Kk
n °
= 17 1
:\E (v anjh(tnj,s)] dM(s),
S j=1
a.s., where the first equality holds point-wise by continuity of sample paths of o
Y. Thus v" a_.h(t j") converge in L“(S,a(A),m) to some function aq(x',e) and y
J=1 ]
we have D
Y(x',e) = {q(x-,s) dM(s) a.s .
S {

.......................
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for every x' ¢« U'. Moreover g(adt,') = ah{t,*) m-almost everywhere on S,
provided aét ¢ U'. According to claim 2 there exists qo(x',s) such that
go(-,s) e V(U') for all s € S and go(x',') = g(x',*) m-almost everywhere for
every x' ¢ U'.

Define a Borel measurable function G: S - V(U') by [G(s)Y(x') = qo(x',s)

and H:S »~ V(T) by H = ¢’]oG. Let ho(t,s) <H(s),6t>. Clearly (i) is ful-

filled. To show (ii) let t ¢ T and let a > 0 be such that ad, « UV'. Since

1}

H(s) = ¢'1[G(s)] if and only if <H(s),x'> go(x',s) for all x' ¢ U' we obtain
ah (t,s) = <H(s),as;> = g (ad,,s) = g(as,,s) = ah(t,s),

where the last two equalities hold for m-almost all s ¢ S. (ii) is proved.

(iii) follows by the weak-star density of W in [V(T)]'. The proof of Theorem

5.1 is complete.

Corollary 5.2. let X, and h0 be as 4in Theonem 5,1. Then the function

f: S > V(T) defined by [f(s)](t) = ho(t,s) belona to Sg(T)‘ In panticulan,

fS]]hO(-,s)ljﬁ(T)dm(s) < o, Funther, fon every € > 0 and p ¢ (0,a) there exist
a finite sequence {Xj}j=1 c V(T) and painwise disjoint sets Aysooosh e A such
that
.) - 1P
EHXO( ) XE( )HV(T) <€

_n
whene Xe(t) = Zj=1xj(t)M(Aj), teT.

Proof. Follows by (iii) of Theorem 5.1 and Proposition 3.1.
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6. A characterization of SaS processes with absolute continuous trajectories.

A characterization of SaS processes (1 < a < 2) with absolute continuous
sampole paths in terms the so-called covariation function has been obtained by
Cambanis and Miller in [3]. We shall characterize SaS processes with above
sample path property using the representing function h. Moreover, in our
case 0 < a < 2.

Let us recall that a function x: [a,b] ~ R is absolutely continuous if
for every ¢ > 0 there exists a § > 0 such that for every disjoint family

n . n .
I(tk,uk)}kzl of subintervals of |a,b] Zkz]lx(uk) - x(tk)] < g, provided
XE=][uk - tk[ < §. Then x is absojutely continuous if and only if there exists

13

X ¢ L][a,b] such that

(U
x{u) = x{a) + J x(t)dt
a
for every a <u < b. Every absolutely continuous function x is differentiable

dx
dt

space of all absolutely continuous functions on [a,b] whose derivatives are

almost everywhere and = x almost everywhere on [a,b]. let AC” [a,b] be the
integrable in the p-th power, p > 1.
Let

X(t) = Jsh(t,s)dM(s), t - [a,b]

be an SaS process, where M is an SaS random measure defined on a t-ring of subsets
of S and with the control measure m. As before h is a deterministic function

such that h(t,+) - L'(S,~(A),m) for every t . |a,b].

Theorem 6.1. X has a wmediddeation weti samte paths (n ACD[a,b) (O and

Atk
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(i) 4o every t o [alub] h (t,*) = h(t,) m-atmest cvenmeheny,

O(
(1) 4on cveny s -+ S h(+,s) AcPla,b],

ah,

»
¢ (b ‘
(Cg(t,s)[Pat)Pam(s)  if 0 - p,
} g,
*
! . b :
lr b lg(t,s)| fsfalg(u,v)[ du dm(v)
Nk e | lg(t,s)1" (1+10g, —— —~s - ——-— ] dt dm(s),
>e Pglu,s)du seiglt,v) ! dmiv) if 4= D,
i | a S
O !
I[b b p/ .
\i (JS‘Q(t,S)I dm(S)) dt if 1 _/ p < .
' a

The proof of Theorem 6.1 is preceded by the lemma below which extends
Proposition 4.2 in [5], where only the case p = a has been considered. Since

we use a similar argument 1in all cases of p, the case p = n is also proven here.

Lemma 6.2. Lot &, Tqs fosen- be (.d.d. stmmetsdc wandem vaxdables and

.-] /I"l . . -
375 converaes als, (4and ente (ORI <

0 ¢« 2. Then the sewdes 7
J

YR e
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Proof. Since L(Ej) = L{¢) we have for every t > 0

1/a

(6.1) tOE g]* -1 <) P l£51 > t5 ) < t™E |g|°%
J

‘
i
3

Therefore E |£|% < » is a necessary condition for the a.s. convergence of

5 j'1/“ £ The sufficiency follows from (6.1) and the following estimates for every t>0

J
[ 7 EGT® el <ta' N = ) e e 1] < 51
< J J

2 .-
SAE L

i iz |e/t]
! (6.2)

N
m
aa i

2 g (g2

]/QF we use Corollary 3.4 in Gine and Zinn

Jo estimate the moments of ) j 5

(8] which gives

(6.3) €37 %;17 e sup 157 e P e 1) e e sV PP,
J J

where & = inf {t > 0: = P(|g] > ti'/%) < 87713%YP} and ¢ = C(p), pso.

y (6.1) we aet

(6.4) s - (E 1619V with ¢ = Cla,p).
c

To obtain bounds for the first term on the right side of (6.3) we utilize

..................

...............

...................................................................
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1
1
-4
)
R
' -
) |
]
-]
]
]
-
)

)
1
4
]
' .
. 1:
b
el
.
v




25

Lemma 3.2 in [8] which yields

(6.5) E sup 1571/

P .p
£~ 6P +R
j it ¢ a,p

where C = C(p) and

= '—]/a : -1/01 P
Ry, p Z.Ela g5 g5l > 6377%)]
J
=€ [gP} jPe, |
j<je/s|®
Since for every x > 0 (1'r)-](x]-r']).i ) iTT a1+ (1—r)'](x]'r_])
<x T
provided r # 1 and r > 0 we get for r = p/a # 1 )

_ a 1-p/a
R, o< ElEPO s (- 'LED) D

O,p

< P glglP+ ]z;l%—-T'5p-a Elg|®

fa - p| P

and

o]

P _ o p-a o
Rap 2o N o & Bl

Above estimates in conjunction with (6.4) and (6.5) give

(6.6) £ sup 377%1P - ElelP + (£ 1g1)P
J c
with C = C(a,p) and p # a. In the case p = o elementary inequalities

z j-] i] + ]09+Xs x>0 _)’19]0

log, x
J<x

| A
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|
£ 121 tog, |8 <R < 1] (0 + 10g,]8]")
2 09, 131 X fa,a = 09 (3| /-
o
Using (6.4) and (6.5) we get
a
(6.7) Esup 15791 L E (2% (1 + Tog, L5
. J + o /o
J o E |&] .
®
where C = C(a).
By (6.2) for t = & and (6.4) the second term on the right side of (6.3)
is bounded from above by C(E |£|a)]/a with C = C(a,p). Therefore (6.6) for °
p# aand (6.7) for p = o, respectively, in conjunction with (6.3) conclude
Lemma 6.2.
Proof of Theorem 6.1. Clearly ACp[a,b] is a separable Banach space with ‘e
the norm B
o ax,P . \1/p R
.
and the evaluations x -~ x(t) are continuous for every t ¢ [a,b]. By Theorem .
5.1 there exists a function hO satisfying (i) and (ii) provided X has a modifica- o
tion with sample paths in ACp[a,b]. Then a function f: S - ACp[a,b] defined ii"-»
by [f(s))(t) = ho(t,s) is Borel measurable and in view of Theorem 5.1 (iii) -
and Proposition 3.1 f ¢ S% . Conversely, if f ¢ S® 0
AcPla,b) AC”a,b]
then fsf(s)dM(s) is a random element in ACp[a,b] such that Xo(t) = <fsfdM,6t> = .
fsho(t,s)dM(s) = X(t) a.s., i.e. Xo gives a required modification of X.
Therefore X has a modification with sample paths in ACP[a,b] if and only if ﬁ
(i), (i1) and f ¢ s¢ . Note also that without Toss of aenerality we may d
Ac’la,b]
assume that ho(a,') = 0 (replacing X by Xa(t) = X(t) - X(a)).
By Theorem 4.2 f ¢ S° if and only if f  L® and the series o
ACPla,b] ACPla,b] o
Ly
e e RO ;
| SR RO A A I RIS S D AP S A P NI AN A AP s
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: Zj"1/“s.?'(tf) converges in L9 for some (each) g > 0. Here [F(s)](t) = .
P‘ 3o ACP[a,b) - _
hy(t,s)]1f(s)]]™" and

b ,oh b
1FE1 = Inglas)] + (] =2 nifan e - ([ att.s)1Pa) 7P,
a d

oh
where g(t,s) = —gfg(t,s). Moreover rg 's are i.i.d. random elements in S such

P(T; e A) = mf(A)/mf(S), A ¢ o(A) and dmf(s) = ||f(s)||adm(s). We have

b
(6.8)  mg(S) = Jsllf(s)lla dm(s) = I ([ lg(t,5)|Pat)* Pan(s)
S a

¢

and m(S) < = provided f ¢ S .
f AcPla,b]

Further,

n b n b
e 11T 57 F NP = [ e 18 57 o ate DR IPat ] up (e, |
j=1 a J=1 a S

Since {un}:;] is a point-wise increasing sequence of functions and for every t

-1

n g
o(t) 2 )3T Pegatea DA Por

as n,n, ~ =, by the Monotone Convergence Theorem Zj']/aejF(r§) converges in

LP if and only if
AcPa,b)

n
Vim E[| j"/“ej? (Tg)l(p < o

Nseo  j=
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Case o < p. By Lemma 6.2 ,
b [
- f f -
v £ 11 57T DI [Celate Dl 7P o
-0 j=1 a
-1 b <P a-p -1 a .
= ()7 [ | 19(6,9)1P11F)11%7P an(s) ot = Ine($)37 [ 11£(5)]%m(s) = 1. -
as S T
Therefore the condition f ¢ L% is also sufficient for f ¢ S%
AcPla,b] ACP[a,b]
°
Case oo = p. By Lemma 6.2
lim EJ] Z i T(rf)llp
N j=1 .
[
b lg(t,s)(%m(S) |
-1 f o ’
ne($)37 [ 19(t.5)1" [0 + Tog, t ] dn(s) dt
a’s [1£(s)11%1g(t,v)|%dm
‘0 "
which together with (6.8) ends this proof. ’
Case o > p. By Lemma 6.2 j
i R
VimE [ 5% ?ug)\lp
n-e J=1
plap (P o p/a |
S (TP 1g(tas)|® an(s)IP* at, .
a S
which in conjunction with (6.8) completes the proof of Theorem 6.1.
.
Remarks: o
Theorem 6.1 with appropriate modifications gives conditions for paths
to have (n-1) continuous derivatives with the (n-1)th derivative in ACpLa,b]. .
An alternative proof of Theeorm 6.1 can be obtained by an observation _.
that AcPla,b] is isomorphic with Rx LP[a,b] (x » (x(a),dt)), and by the fact o
.
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that a full characterization of stable measures on Lp-spaces is known (see
(18], [3] and [14] for p # a and [27] for p = a). The proof given here, which
is a straightforward application of Theorem 4.2, uses the same argument for all
cases of p and o and is self-contained.

The following result gives a full characterization of harmonizable SaS
processes with absolutely continuous sample paths. Cambanis and Miller [3],

using different methods, solved the case o > 1.

Corollary 6.3. Let M be an SaS random measure on the Borel co-aflgebra of

00

R with the finite control measure m. Then X(t) = [ eitde(s), t ¢ [a,b],

-00

has a modification with sample paths in ACP[a,bl, 1 < p < =, if and only if

(6.9) J Is|® dm(s) < e.

-00

Proof. Since R and € are isomorphic Lemma 6.2 can be immediately
extended to the case of complex valued random. variables by considerina
two-dimensional random vectors instead of real random variables. Therefore
Theorem 6.1 remains true when we replace a real valued function h by a complex

one. In our case

and ah _ ise1ts.

ot

h(t,s) = e'ts

It is elementary to check that in all cases of p and o Theorem 6.1 yields
the same condition (6.9).
Another important class of stable processes which is disjoint from the

class of harmonizable ones (see Cambanis and Soltani [6]), is the class of

SaS processes having the moving average representation.
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Corollary 6.4. Let k: R » R be an absolutely continuous function on

everny finite interval and such that fjw |k(s)|%ds < . Let

X(t) = /7 k(t-s)dM(s), t ¢ R, whene M is an SoS random measure defined on

Bonel bounded subsets of R with the Lebesgue measune as the contrhof measunre.
Then X has a modification with sample paths in ACPla,b] for eveny

~» < a<b<wifand only if

[ (kp(u))“du <o ifac<p

(e dka l%% .
JO J Igsl” (1 + log, s+t)) dsdt < © if o = p
-0 o

and
o a
J l%%} ds < if a > p,
u+l dk|p 1/p
where k_(u) = (J ‘a—- ds) , wueR.
P " I

Proof. Since X is a strictly stationary process it is enough to show
that {X(t): t ¢ [0,1]} has a modification with sample paths in ACP[a,b] if and

only if the above conditions hold. Define ho(t,s) = k(t-s), t,s ¢ R. Then

ah h

3
0 _ dk _ ey s cas 0 -
3T (tys) = ds (t-s) and it is easy to check that the condition Qa,p(Sf—) <

is equivalent to the above conditions for k.

.',..
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7. Bounds for moments of a double a-stable stochastic integral. ~73
Let h:[0,1] x [0,1] + R be a jointly measurable function such that 5.l
h(t,s) = 0 for s > t. Let M be an SaS random measure on the Borel c-algebra ;f
of [0,1]. R
McConnell and Taqqu [20] have proved that a double stochastic integral )
(1 4

(7.1) on) = | J h(t,s)dM(s)dM(t) ,
0’0 -

exists as the limit in LP (p < o) of integrals of "dyadic" functions if and
only if

1 1
(7.2) P{J | I h(t,s)dM(s)|* dt < =} =1

0 0

V S

and in this case

py1/p
(7.3) (Ela(M %) : pa,p(h)’

1 1
where Py, p(h) = {E[Jo | J h(t,s)dM(s)ladt]p/u}]/p,
’ 0

C = C(a,p) and p < a. Moreover, Poyp is a complete norm (quasi-norm if p < 1)
on the space of all functions h such that J(h) exists.

At the same time Rosinski and Woyczynski [27] studied double a-stable
integrals as iterated Ito-type stochastic integrals and proved that the

finiteness of
[h(t,5) %78 [hu,v) [* dudy

10
(7.4)  N(n = J J Ih(t,s)|°01 + log, ldt ds

00 félh(t,v)|“dv félh(u,s)\adu

e el

is necessary and sufficient for the existence of J(h) in this sense. They

have proved also the equivalence of (7.2) and Na(h) < o, This shows, in




-
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particular, that both approaches to define a double a-stable inteqral are
equivalent.
A natural problem which arises here is the relation between the norm

~N_, where C = C(a,p).

o) and the functional Na' We shall prove that pa,pc .

a,p

This in conjunction with (7.3) yields definitive bounds for moments of J(h).

Let now h: [0,1_|2 + R be a jointly measurable function such that for every

t ¢ 10,1] h(t,*) « *[0,1]. By Proposition 6.1 in [27]

1
X(t) = J hit,s)dM(s),  t e [0,1]
0

can be defined as a measurable stochastic process and by (7.2) X(-,w) « La[O,l] for
almost all w. Therefore, fé félh(t,s)luds dt < = (cf. [28]).

The lemma below justifies the interchanging of stochastic and usual
integration and for the case a > 1 has been proved in L4] (Theorem 4.6) and

in [20], Lemma 4.4. We give here a simpler and shorter proof of this result.

Lemma 7.1. Let a > 1 and £et h and X be as above. Then for every

b € La [09]]’ (l—"’ ];I = ])

1 1 (1
(7.5) jo o(t)X(t)dt = JO[JO¢(t)h(t,s)dt]dM(s) a.s.

Proof. Let {Uj} be a sequence of i.i.d. random variables uniformly
distributed 1in [0,1) and defined on an auxiliary probability space (Q',P'),
so that {Uj} is independent of {X(t): t ¢« [0,1]}. For every fixed w ¢
such that X(¢,») e L*[0,1) random variables ' ® w' - ¢(Uj(m'))X(Uj(w'),w)
are i.i.d. and E' |¢(Uj)X(Uj,w)| = f;|¢(t)X(t,m)|dt < o, Therefore Kolmogorov's

-
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SLLN yields the P'-a.s. convergence:
1 )
10 f
L o(U)X(Ugsw) > ENO(U XUy w) = | o(t)X(t.w)dt.
j=1 0
) By Fubini's theorem, for almost all w' ¢ Q' )
1 0 (!
(7.6) 5 I e(Us(u"))XUste'),e) > | o(t)X(t)dt
J=1
0
P-a.s. on Q. '

Define now i.i.d. random elements Y: o' » L*[0,1] by [Y;(w")(s) =
= ¢(Uj(w' ))h(UJ.(w'),S). Then

/1
= J o(t)h(t,s)]] dt

Y *[0,
0 L*[0,1]

Al

L*[0,1]

1 A
- [ [f 16(£) 1% [h(t,s)|%ds]/® at

00
1 (! o . 1l/a c
= [oto)1 ¢ Inces) 1 asy Ve at R
0 0 '
1 : 1] g
< loe)*ae)' Vo d [ ntes)® gsat]'/* < o =
0 00 ' ]
By SLLN in L%[0,1] .
]
1 M 1 »
L3y~ ey = | althnct,e)dt ]
j=] 0 ! 4

P'-a.s. Therefore for almost all w' ¢
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1 1 1 1 "
FL oW KU ) e) = I T e(Uy(et))h(Ug(u'),5) JaM(s) =
3= o 371 ) '
o
(7.7) _
1, N P
i [ (5 1 Ys(w')]dM » | [J ¢(t)h(t,s)dtIaM(s).
o 37 0 0 .
°
Since there exists w' « ' for which both (7.6) and (7.7) hold the proof is
complete.
[
Corollary 7.2. Let h: [0,]]2 > R and X be as (n Lemma 7.1, Then the
wectien £ [0,1] » LY[0,1] dedined by [f(s)](t) = h(t,s) beLengs to S and
L'[0,1]
1 ]
X = J f(s)dM(s), a.s.
0
A 0
Proof. By (7.5) for every & « (L"[0,1])" <X ,s> = j <f,6>dM  a.s.
0 ,
[ J
Thus Proposition 3.1 completes the proof.
Theorem 7.3. Llet 1 < o< 2 and p < a. Then thene exists €= Cla,p) “
®
ol that lew ocven h
' p\1/p - ]
(E1J(h)'1P) O N (). .
®
1
Proof. In view of (7.3) it is sufficient to prove %D ¢ N“. By
Corollary 7.2 and Theorem 4.2
! 'y P/291/p p 1/p ] p 1/p " | 1
) = TEC X)) hde)™ P = (e x| P )P = (e [ fam )P ) ]
N 0 L"[0,1] 0 L'[0,1]
il , - f ' :-
RO IR D L AR (T I B (AT L a
0 L'[0,1] i=1 * Lo, 11 o |
R
® )
R
g e e -
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Here f]llf(s)\lu ds = f]f]lh(t,s)|adtds and by Lemma 6.2
0 La[U 1] 0°0

fyvy, -1 fyn
) h(t,r.)| dt
) HL"‘[o,u i

foo - fon
1 \lf(T])llLa [h(t,m)]

S ENFEDIT nt]) [0+ tog, b0 1] 1 at
0 L [0,1] ELFGITS  Ihit,a))”
L'10,1]

s

R A - 1, v :-1/a
EJL ) 3 el =B Sl 3 3T el
4 3 g qq 7 F ol )3 e e

b

- (J] f]\h(t,s)l“dt ds)”!

N (h
oo (h)

which finishes the proof.
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discussions and helpful remarks during preparation of this paper.

..............
...........................................

> g
v " ———

T T -~ ey — g -y — % =

f R R




REFERENCES

1. Bretagnolle, J., Dacunha-Castelle, D., and Krivine, J.-L. (1966), Lois
stable et espaces Lp, Ann. Inst. H. Poincare Il 231-259.

2. Cambanis, S., Hardin, D.C., and Weron, A. (1984), Eraodic properties of
stationary stable processes, Center for Stochastic Processes Tech.
Rept. No. 32. Univ. of North Carolina, Chapel Hill. ’

3. Cambanis, S. and Miller, G. (1980), Some path properties of pth order and
symmetric stable processes, Ann. Prob. 8, 1148-1156.

4. Cambanis, S., and Miller, G. (1981), Linear problems in pth order and stable {
i' processes, SIAM J. Appl. Math. 41, 43-69. »

5. Cambanis, S., Rosinski, J. and Woyczynski, W.A. (1984), Converaence of
guadratic forms in p-stable random variables and & -radonifyina
operators, Ann. Probability, to appear. P

C 6. Cambanis, S., and Soltani, A.R. (1934), Prediction of stable processes: »

spectral and moving average representations, Z. Wahrsch. Verw. febiete
66, 593-612.

7. Gine, E., Marcus, M.B. and Zinn, J. (1984), A version of Chevet's theorem
for stable processes, Preprint.

0

. Gire, F., and Zinn, J. (1983) Central Timit theorems and weak laws of larae
numbers in certain Banach spaces, 7. Wahrsch. verw. Gebiete 62, 323-354.

9. Hardin, C.D. (1982), On the spectral representation of symmetric stable
processes, J. Multivariate Anal. 12, 385-401.

10. Hosoya, Y. (1992), Harmonizable stable processes, Z. Wahrsch. verw. febiete
60, 517-533.

i1. ¥anter, M. (1972), A representation theorem for LP spaces, Proc. Amer. Math.
Soc. 31, 472-474.

12. vuelbs, J. (1973), A representation theorem for symmetric stable processes
and stable measures on H, Z. Wahrsch. Verw. Gebiete 26, 254-2771.

3. LePage, R., Woodroofe, M., Zinn, J. (1981), Convergence to a stable distribu-
tion via order statistics, Ann. Prob. 9, 624-632.

14, Linde, W. (1983), Infinitely divisible and stable measures on Banach spaces,
Teubner-Texte zur Mathematik. Band 58, Leipzig.

15. Marcus, M.B. (1983), Extreme values for sequences of stable random variables, :
Proceedings of NATO Conference on Statistical extremes, Vimeiro, s
Portugal, 1983. ® )




q
37
16. Marcus, M.B. and Pisier, G. (1981), Random Fourier series with applications
to harmonic analysis, Ann. Math. Studies, Vol. 101, Princeton Univ.
Press., Princeton, N.J.

17. Marcus, M.B. and Pisier, G. (1984), Characterizations of almost surely
continuous p-stable random Fourier series and strongly stationary
processes, Acta Mathematica 152, 245-301.

18. Marcus, M.B. and Woyczynski, W.A. (1979), Stable measures and central Timit
theorem in spaces of stable type, Trans. Amer. Math. Sco. 251, 71-102.

19. Masry, E., and Cambanis, S. (1984), Spectral density estimation for stationary
stable processes, Stochastic Proc. Appl. 18, 1-31.

20. McConnell, T.R., and Taqqu, M.S. (1984), Double integration with respect to
symmetric stable processes, Cornell U. Dept. of Oper. Res., Tech.
Rept. No. 618.

21. Pisier, G, (1975), Le theoreme limite central et la loi du logarithme
iteree dans les spaces de Banach, Seminarie Maurey-Schwartz 1975-1976

22. Prékopa, A. (1956), On stochastic set functions I, Acta Math. Acad.
Scient. Hung. 7, 215-263.

23. Pourahmadi, M. (1984). On minimality and interpolation of harmonizable stable
processes. SIAM J. Appl. Math. 44, 1023-1030.

24. Robertson, A. and W. Robertson, Topoloaical vector spaces, Cambridae 1964.

25. Rootzen, H. (1978), Extremes of moving averaaes of stable processes. Ann.
Prob. 6, 847-869.

26. Rosinski, J. (1985), Random intearals of Banach space valued functions,
Studia Math. 78, 15-38.

27. Rosinski, J. and Woyczynski, W.A. (1984), On Ito stochastic inteqration
with respoct to p-stable motion: inner clock, inteagrability of sample
paths, double and multiple intearals, Ann. Probability. to appear.

28. Rosinski, J. and Woyczynski, W.A. (1984), Moment inequalities for real and
vector p-stable stochastic integrals, Center for Stochastic Processes
Technical Report No. 87, University of North Carolina, Chapel Hill.

29. Schilder, M. (1970), Some structure theorems for the symmetric stable laws,
Ann. Math. Statist. 41, 412-421.

30. Schreiber, M. (1972}, Quelques remarques sur les caracterisations des
- espaces L', 0 - p <~ 1, Ann. Inst. H. Poincare 8, 83-92.

e 31. Sztencel, R. (1981), On boundedness and convergence of some Banach space
: valued random series, Probability and Math. Statistics 2, 83-838.

32. Weron, A. (1983). Harmonizable stable processes on qroups, (enter for Stochastic
Processes Tech. Rept. No. 32. Univ. of North Carolina, Chapel Hill.

Ty ———
T T Yy —



ny . v rare o e AR
M ...... K '
L : . AN

..... e, TR T - = 1ot .....:,..h' _ i i < _t
g
§
s
b

e ettt
ST e, P A R
e e et . A .

PRI ALIP IR, Tl VI QAR S b o

PRI Thit S

FILMED
DTIC




